Chapter 5

Connectionist Models
of Human Associative Learning

A. J. Wills

Warning: If you are new to the study of human associative learning and
have skipped the first four chapters you're going to find the next four
pretty tough. This is because all these chapters, particularly this one,
draw on concepts introduced in chapters 1-4.

In chapter 1, I drew a distinction between two quite different concepts
that sometimes both attract the term associative learning. On some oc-
casions, “associative learning” is used to define a particular type of
problem that an organism has to solve. On other occasions, “associative
learning” is used as a theoretical statement about the sorts of mental
processes by which the organism solves this type of problem.

ASSOCIATIVE LEARNING — LEARNING OF ASSOCIATIONS

Let’s consider “associative learning” as a problem definition first. In this
sense of the term, “learning” refers to a relatively permanent change in
response potentiality caused by information available from the organ-
ism'’s perceptual receptors. This rather technical definition is a variant
of the definition offered by Reber (1985, p. 395).

Breaking this definition of “learning” down into its constituent com-
ponents, “response potentiality” indicates that learning results in a po-
tential to respond differently. Sometimes the organism actually will act
differently. At other times, no immediate behavioral change is observed
but evidence that learning has occurred emerges later. The use of “re-
sponse potentiality” also underlines the important idea that learning is
a hypothetical event for which behavior provides evidence.

The phrase “relatively permanent change” is intended to exclude vari-
ous types of momentary changes in response potentiality. This is a
fuzzy boundary, but changes in response potentiality that persist for no
more than a few hundred milliseconds are not generally considered as
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“learning.” The phrase “caused by information available from the or-
ganism’s perceptual receptors” is a statement about the data upon
which learning operates. “Perceptual receptors” indicates structures
such as the retina, the cochlea, the somatosensory receptors, and so on.
One important aspect of this definition is that it is not intended as a
statement of process. Hence, no assumption is being made about an up-
per limit to the amount of processing that results from sensory infor-
mation, the time course over which that happens, or the extent to which
the learning process importantly involves integration with already
learned information.

When “associative learning” is used as a definition of a type of prob-
lem facing an organism, the intent behind this phrase is perhaps better
expressed as “the learning of one or more associations.” The intent be-
hind the term association is statistical; it is the extent to which changes
in one environmental variable are related to changes in another. The
provision of an appropriate statistical measure of association is not a
trivial problem. For example, one is likely to use a different measure de-
pending on whether a predictive or correlational relation is being con-
sidered. A predictive relation has a particular direction. For example, if
you know a car has a dead battery you can predict pretty reliably that
the car will not start. However, if a car will not start, you should be
much less confident about predicting the presence of a dead battery.
Delta P (chaps. 2 & 4) is one example of a measure of a predictive associa-
tive relationship. In contrast, a correlational relationship as measured
by, for example, Pearson’s r is bidirectional. Even within these two
classes (predictive and correlational) the choice of statistic is not
straightforward. Recall, for example, from chapter 2 that the delta Pand
PowerPC equations provide two different potential measures of the
strength of a predictive relationship.

ASSOCIATIVE LEARNING — CONNECTIONISM

Now let’s turn to the usage of “associative learning” in the sense of a
class of theory about the processes involved in the “learning of associa-
tions.” Here we can haul ourselves out of the linguistic treacle by using
the term connectionism. As I said in chapter 1, there is an unfortunate
tendency when discussing the history of psychology to assume that
connectionism started in 1986 with the publication of the PDP manuals
(Rumelhart, McClelland, & The PDP Research Group, 1986). These man-
uals undoubtedly had an enormous impact; they encouraged the main-
stream of human cognitive psychology to reconsider the usefulness of
connectionism as a theoretical system. However, connectionism is much
more than 20 years old. The word connectionism can be traced back at
least as far as Thorndike (1898), whereas the development of
associationism can be traced from Aristotle, through the British
Empiricists (e.g., Hume, 1739/1978), to Ebbinghaus (1885/1913) and
Pavlov (1909/1928) and, from there, throughout the 20th century.
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Connectionism is a theoretical approach that assumes learning re-
sults from the formation of connections between representations. These
representations (often called “nodes”) have a variable level of activation.
The activation of a node is passed through all of its outward connections
to other nodes, hence determining the activity level of those nodes. The
connections between nodes have a variable “strength” or “weight.” The
stronger the connection, the more efficient it is at transmitting activa-
tion. The strength of connections is changed by a learning algorithm.
Many different learning algorithms have been proposed, the simplest of
which is probably the Hebbian algorithm (Hebb, 1949). In Hebbian
learning, the connection weight between two representations increases
if they are cojointly active.

For many, one of the appeals of a connectionist approach is that it
appears to be a simplified model of the action of neurons. This perhaps
gives the potential, in the long term, for more unified accounts of the
human mind that incorporate both physiological and psychological
observations. On the other hand, one of the most commonly used
learning algorithms (Rumelhart, Hinton, & Williams, 1986) allows in-
formation to travel in both directions down the same connections;
something that given our current understanding of neurophysiology
seems rather unlikely. So, whereas some theorists do see the integra-
tion of physiology and psychology as an important goal, to others the
neuron is more like a descriptive metaphor for the operations of a
connectionist system. The implication of this must be that connect-
ionist theories have (at least perceived) virtues other than the potential
to integrate physiology and psychology.

Probably the other main appeal of connectionist models is the level
of specificity that is gained. A theory expressed in connectionist terms
seems to leave much less room for ambiguity and interpretation than a
theory expressed in more informal terms. One example of an infor-
mally expressed theory is Alan Baddeley’s visuo-spatial sketchpad
(see, e.g., Baddeley, 1986). Yet, a theory can clearly reach a high level of
mathematical specificity without being connectionist. For example,
Ashby’s accounts of categorical decisions (e.g., Ashby, 2000) are ex-
pressed specifically and mathematically but are not connectionist.
Connectionist accounts can even have certain pragmatic disadvan-
tages compared to some other kinds of mathematical model. For exam-
ple, deriving predictions from connectionist systems can become quite
involved because they are generally nonlinear systems (which makes
the mathematics more complex). For similar reasons, it can also be dif-
ficult to determine whether a particular behavior of a connectionist
system is a general property of the model or whether it is parame-
ter-specific. Such complexity may be necessary to explain human be-
havior but it is not, in itself, a virtue.

Probably the best way to consider connectionist systems are as the-
oretical accounts that have a high level of specificity while simulta-
neously taking into account certain basic principles of neural
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function. It is this combination that presumably leads to their contin-
ued popularity.

OUTLINE OF THIS SECTION

The following three chapters are examples of how connectionist models
can be employed as theories of human associative learning. All three
chapters are broadly similar in approach, probably because four of the
five authors have worked closely with each other for some years (Mark
Suret, Mike Le Pelley, and I were all members of Ian McLaren'’s research
group for a number of years during the period 1994-2003). As a result
of these close links, the level of agreement across these chapters is
greater than it is across the field of connectionist modeling of human as-
sociative learning as a whole.

Chapter 6 starts with an introduction to connectionism and describes
the Hebbian learning algorithm alluded to in the previous section. Jan
and I then continue with a consideration of how connectionist systems
account for the learning that undoubtedly can occur in the absence of
feedback. We then consider the Rescorla~-Wagner rule (Rescorla & Wagner,
1972) but, in contrast to previous chapters, the concentration is on the
general strengths and limitations of the rule as an algorithm for learning
from feedback, rather than on its ability to predict specific experimental
results. Next, Jan and [ make a case for the need to combine feedback and
no-feedback learning systems. A simple integrated model is proposed as
one example of how this could be done, and is tested against the results of
a novel experiment. The chapter closes with a consideration of some of
the more obvious limitations of the integrated model proposed.

Chapter 7 reprises the Rescorla-Wagner model, this time drawing at-
tention to its prediction that all cues present on a given trial are subject
to the same change in associative strength (assuming the cues are of
equal salience). Following a very elegant demonstration by Rescorla
(2000) that this is not the case for rats, Mike and lan demonstrate that it
is also not true for humans performing an allergy prediction task. They
then introduce their APECS model—a different type of connectionist
system—and show that it can predict the results found. Next, they dem-
onstrate the presence, in humans, of a related effect with absent-but-ex-
pected, rather than present, cues (retrospective revaluation, see chap. 3).
The APECS model is also able to predict these entirely novel results. Fi-
nally they present a study (based on work by Lochmann & Wills, 2003)
that indicates that the APECS model needs to be modified to explain cer-
tain predictive history effects. Predictive history is the idea that cues
that have a history of being predictive form associations more quickly
than those that have a history of being nonpredictive, even when the
outcomes being learned about are novel.

In order to explain the results found, Mike and lan suggest the adop-
tion of the associability change processes proposed by Nick Mackintosh
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(1975). The basic idea is that, in addition to their variable activity, nodes
representing stimuli have a variable “associability” that modulates the
rate at which associative links from this node change in strength. In the
Mackintosh system, if a stimulus is a good predictor its associability in-
creases whereas if it is a poor predictor its associability decreases.

In chapter 8, Mark and lan continue the theme of associability pro-
cesses. They start by introducing Lawrence’s (1952) “Transfer along a
continuum” (TAC) finding with rats. TAC, roughly stated, is a demon-
stration that training on an easy discrimination (e.g., black vs. white)
before transferring to a difficult discrimination (e.g., light gray vs. dark
gray) can result in better performance on the “hard” discrimination
than an equivalent amount of training on the “hard” discrimination
from the outset. The basic result can be explained without recourse to
the concept of associability. However, a more sophisticated version of
the experiment, again performed with rats (Mackintosh & Little, 1970),
seems to require some kind of associability process. Mark and lan dem-
onstrate that effects analogous to those found by Mackintosh and Little
can also be found in humans. They then go on to demonstrate how the
McLaren and Mackintosh (2000, 2002) connectionist model can be
madified to include the sort of associability process originally proposed
by Mackintosh some 25 years earlier. They also demonstrate that this
modified model can reproduce in detail the patterns of results found in
their human experiments.
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